
Abstract. It is demonstrated that relatively large geo-
metrical changes make Emsley et al.'s assumption (J Am
Chem Soc (1978) 100:3303) on the counterpoise correc-
tion for the basis set superposition error including the
fragment relaxation terms unacceptable.

Key words: Basis set superposition error ±
Boys-Bernardi counterpoise algorithm ±
Fragment relaxation

1 Introduction

In 1970, Boys and Bernardi [1] proposed the so-called
counterpoise procedure (CP) to correct for the basis set
superposition error (BSSE) [2, 3]. Let us consider two
interacting systems, A and B, forming a supermolecule,
AB. The uncorrected interaction energy (DENCP(AB))
can be written as

DENCP �AB� � Ea[b
AB �AB� ÿ Ea

A�A� ÿ Eb
B�B� ; �1�

where Er
X �Y � is the energy of system Y at the geometry X

computed with the basis set r (a, b and a È b represent
the basis sets used to compute the systems A, B and AB,
respectively).

The CP corrected interaction energy (DECP(AB)) is
computed as [1]

DECP �AB� � Ea[b
AB �AB� ÿ Ea[b

A �A� ÿ Ea[b
B �B� : �2�

According to Boys and Bernardi [1], the di�erence
DECP(AB) ) DENCP(AB) is an estimate of the BSSE

DECP �AB� ÿ DENCP �AB� � Ea
A�A� ÿ Ea[b

A �A�
h i
� Eb

B�B� ÿ Ea[b
B �B�

h i
:
�3�

If there are no geometrical variations when passing from
the isolated systems A and B to the corresponding
subsystems A and B forming part of the supermolecule

AB, then all the four terms appearing on the right-hand
side of Eq. (3) are readily computed. To compute
Ea[b

A �A� or Ea[b
B �B� one performs a calculation on the

supermolecule AB putting to zero the nuclear charges of
all nuclei belonging to system B (or A) and subtracting
the appropriate number of electrons from the calcula-
tion. However, when A and B are not atoms, there is
always a change in the geometry of two systems when
they interact with each other to form a supermolecule.
Under such circumstances the question arises whether
Ea[b

A �A� and Ea[b
B �B� are the most appropriate quantities

to use to compute BSSE.
In this vein Emsley et al. [4] proposed the following

expression as an alternative to Eq. (3):

DECP �AB� ÿ DENCP �AB� � Ea
AB�A� ÿ Ea[b

AB �A�
h i
� Eb

AB�B� ÿ Ea[b
AB �B�

h i
: �4�

which is valid (i.e. equivalent to Eq. 2) under the assump-
tion that ``the ghost orbitals will stabilize the isolated
molecule at its equilibrium geometry and at its geometry in
the complex to the same extent'' [4]; that is to say

Ea
A�A� � Eb

B�B� ÿ Ea[b
A �A� ÿ Ea[b

B �B�
� Ea

AB�A� � Eb
AB�B� ÿ Ea[b

AB �A� ÿ Ea[b
AB �B� : �5�

All terms in Eq. (4) are well-de®ned and can be easily
computed whether or not the change in geometry in A or
B when forming the supermolecule AB is considered. It
is important to mention that, as Xantheas has pointed
out recently [5], according to what should be expected,
Eq. (4) predicts a null BSSE �DECP �AB� ÿ ENCP �AB� �0�
as the basis sets a and b tend towards the complete basis
set limit. The remaining question is to assess the degree
of validity of Emsley et al.'s [4] assumption (Eq. 5).

2 Discussion and illustration

It has been stressed recently [6] that the calculation of
energy barriers of processes implying the previous
formation of an intermediate (see Fig. 1) does not
involve BSSE. In particular, the barrier to internalCorrespondence to: J.A. Sordo
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rotation, h, for a van der Waals complex should be
computed as [6]

h � Ea[b
TS �AB� ÿ Ea[b

I �AB� : �6�
If Eq. (5) were exact, an alternative way of computing h
would be

h � DECP �TS� ÿ DECP �I� : �7�
where DECP(X) �X � TS; I� is computed by means of Eq.
(4) giving

h � Ea[b
TS �AB� ÿ Ea[b

I �AB�
� �Ea

TS�A� � Eb
TS�B� ÿ Ea[b

TS �A� ÿ Ea[b
TS �B��

ÿ �Ea
I �A� � Eb

I �B� ÿ Ea[b
I �A� ÿ Ea[b

I �B�� : �8�
Indeed, if Emsley et al.'s assumption [4] (Eq. 5) were
correct, the second and third terms (in brackets) on the
right-hand side of Eq. (8) will cancel each other and one
obtains for h an expression equivalent to Eq. (6). This
demonstrates that the formulation including the frag-
ment relaxation terms [4, 5] is fully consistent. In
conclusion, di�erences between the energy barriers
computed using Eq. (6) (rigorous) and Eq. (8) (approx-
imate) would provide a quantitative assessment of the
degree of validity of Emsley et al.'s assumption [4].

To illustrate this point we present in Table 1 the
barriers to internal rotation as computed with Eqs. (6)
and (8) for two van der Waals complexes, namely,
C2H4áááSO2 and BF3áááNH3. Figure 2 depicts the opti-
mized structures of these two complexes (I1, I2) and the
corresponding transition structures involved in the in-
ternal rotation (TS1, TS2) obtained at the second-order
Mùller-Plesset correlated level [7] using Dunning-Huzi-
naga's double-f polarization ([4s, 2p, 1d]) basis set [8]
(i.e. MP2/D95(d,p)). Examination of data in Table 1
clearly shows that while Emsley et al.'s [4] assumption is
acceptable in the case of BF3áááNH3 (the error involved is
about 10%), it is much less reliable for C2H4áááSO2 (the
error involved is about 74%). Figure 2 helps us to
rationalize these results. Indeed, a greater di�erence in
the stabilizations of the isolated systems C2H4 and SO2

produced by the ghost orbitals at the geometries I1 and
TS1 (123 cm)1) should be expected [9] as compared with
that for BF3 and NH3 at the geometries I2 and TS2

(45 cm)1) since the geometrical variation I1! TS1 is
considerably more drastic than I2! TS2.

Conclusion

In summary, it is demonstrated that extreme care must
be exercised when using the counterpoise correction
including the fragment relaxation energies (Eq. 4) to
correct for BSSE. Relatively large geometrical changes
make Emsley et al.'s assumption (Eq. 5), on which
Eq. (4) is based, unacceptable.
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Fig. 1. Energy pro®le of a process involving an intermediate:
R � reactives, I � intermediate, TS � transition structure and
P � product

Table 1. MP2/D95(d, p) energies (cm)1) for the internal rotation in
the van der Waals complexes C2H4áááSO2 and BF3áááNH3 as comp-
uted with Eqs. (6) and (8). The values of the di�erent contributions
in Eq. (8) are also given

Energy contributions and barriers C2H4áááSO2 BF3áááNH3

Ea[b
TS �AB� ÿ Ea[b

I �AB� 166 457

�Ea
TS�A� � Eb

TS�B� ÿ Ea[b
TS �A� ÿ Ea[b

TS �B�� 1088 2791

�Ea
I �A� � Eb

I �B� ÿ Ea[b
I �A� ÿ Ea[b

I �B�� 1211 2836

h (Eq. 8) (approximate) 43 412

h (Eq. 6) (rigorous) 166 457

Fig. 2. MP2/D95(d,p) optimized structures of the van der Waals
complexes C2H4áááSO2 (I1) and BF3áááNH3 (I2) and the correspond-
ing transition structures involved in the internal rotation (TS1,
TS2). Distances are given in angstroms
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